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Abstract
In a negative answer to the open problem proposed by E Barkai and
J Klafter, it is proved that the theory presented by Amblard et al is not
consistent with the GER. We suggest applying a theory in terms of a fractional
Fokker–Planck equation to model the experiment measured by Amblard et al.
The result obtained is consistent with the statement by Amblard et al
(1996 Phys. Rev. Lett. 77 4470) that the numerical pre-factors of the power
law would be modified by local geometry and are not exact.

PACS number: 87.15.−v

1. Introduction

In a recent experiment Amblard et al [1] measured anomalous transport properties of magnetic
beads embedded in a three-dimensional polymer network. In their paper, Amblard et al
suggested a theory describing the motion of the beads.

Amblard et al found that when the beads are subjected to an external uniform force �F ,
the drift follows

〈x‖(t)〉F ∼ tp, with p = 0.76 ± 0.03, (1)

where x‖ is the component of �x along �F . In addition, they showed that the response to the
external bias is linear. The authors also measured the diffusion of the beads in the absence of
the field, and found〈

x2
‖ (t)

〉
0 ∼ tq , with q = 0.73 ± 0.01. (2)

These observed anomalous power laws (1) and (2) can be readily explained if we consider
the bead deforming the filaments of the cage surrounding it. Indeed, let us consider such a
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filament with bending constant κ , in a solvent of viscosity η. If s is the internal curvilinear
coordinate along the polymer and r(t, s) the transverse deformation of the filament, then the
equation of movement for r(t, s) is

η
∂r

∂t
= κ

∂4r

∂s4
+ f (t, s), (3)

where f (t, s) is the force acting on the filament. It is straightforward to show that the Green
function, F(t, s), associated with this equation can be written in the following scaling form:

F(t, s) = 1

ηs
F

(
ηs4

κt

)
≡ 1

η3/4κ1/4t1/4
F̃

(
ηs4

κt

)
. (4)

If, for the sake of simplicity, we assume that the magnetic bead applies a constant point force,
f at s = 0, then the displacement of the centre of mass of the bead is given by

〈x〉f ≈ 〈r(t, 0)〉f = f

∫ t

0
F(t − t ′, 0) dt ′ ≈ 4

3
f

F̃ (0)t3/4

η3/4κ1/4
. (5)

In the absence of the external force, the bead movement is dominated by the thermal motions
of the surrounding filaments to which it is coupled. In this case, the mean-square displacement
of the bead is the mean-square displacement of the filament,

〈x2〉0 = 〈r2(t, s)〉0 = kBT η

∫
ds ′

∫ t

0
F 2(t − t ′, s − s ′) dt ′ ∝ kBT t3/4

η3/4κ1/4
. (6)

It is interesting to note that, when one evaluates the numerical pre-factors in (5) and (6), one
obtains a semi-quantitative agreement with known values of the f -actin rigidity [2]. The power
laws of the time dependence described by (5) and (6), t3/4, are not altered if one considers
the bead interacting simultaneously with several filaments of the cage. The details of local
geometry should modify numerical pre-factors in these theoretical formulae; undoubtedly, the
bead has to push against several filaments simultaneously while the confined geometry must
change the effective friction constants involved. In [3], Barkai and Klafter pointed out that
although the validity of the generalized Einstein relation (GER) has not been discussed by the
authors of [1], their measurements provide a direct opportunity to check this relation. When
analysing the corrected results of [1] one finds that to a good approximation (equation (7)),
the GER [4]

〈
x2

‖ (t)
〉
0 = 2kBT 〈x‖(t)〉F

| �F | (7)

is valid. They conclude that the GER is well suited to describe the anomalous transport
properties. They could not conclude whether the theory presented by Amblard et al is
consistent with the GER. It would be interesting to clarify this issue. In section 2, we answer
this open problem. In section 3, we give a theory to the GER.

2. Answer to the above open problem

In this section, we discuss the open problem, i.e., whether the theory presented by Amblard
et al [1] is consistent with the GER. From the second equality of equation (4), we have

F(ζ ) = ζ
1
4 F̃ (ζ ), (8)

where ζ = ηs4/κt . Since F̃ (0) = limζ→0[F(ζ )/ζ 1/4] and F̃ (0) �= 0, for any given ε > 0
there exists a positive number δ = δ(ε) related with ε such that for all ζ , |ζ | < δ, we have

F(ζ ) ≈ F̃ (0)ζ 1/4. (9)
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Hence,

F(t, s) ≈ F̃ (0)

η3/4κ1/4
t−

1
4 (10)

for all s such that |s| <
(

κδ
η

)1/4
t1/4. From (6) and (10), a simple calculation yields

〈x2〉0 ≈ 2kBT
sF̃ 2(0)

η1/2κ1/2
t1/2 (11)

for |s| <
(

κδ
η

)1/4
t1/4. This implies that

〈x2〉0 < 2kBT δ
1
4

F̃ 2(0)

η3/4κ1/4
t3/4. (12)

From (5) and (12), finally we have

〈x2〉0 <
3F̃ (0)

4
δ

1
4

[
2kBT

f
〈x〉f

]
(13)

for any give ε. Since δ = δ(ε) → 0 when ε → 0, then for any give ρ < 1 and for sufficiently
small ε, we have

〈x2〉0 < ρ
2kBT

f
〈x〉f . (14)

But we know that 〈x2〉0 = 2kBT
f

〈x〉f [3]. This shows that the theory of [1] is not consistent
with the GER.

3. GER for FFPE

In [5], in order to describe anomalous systems close to thermal equilibrium based on fractional
derivatives, Metzler, Barkai and Klafter presented a one-dimensional fractional Fokker–Planck
equation (FFPE):

0D
α
t W(x, t) = GLFPW(x, t), (15)

where W(x, t) is the probability density function (pdf) at position x at time t. The LFP operator

LFP = ∂

∂x

(
V ′(x)

mηγ

+ Kr

∂

∂x

)
(16)

with the external potential V (x) [6] contains the anomalous diffusion constant Kγ , and the
anomalous friction coefficient ηγ with the dimension [ηγ ] = sγ−2; herein, m denotes the mass
of the diffusion particle. And

0D
α
t W(x, t) = 1


(1 − α)

∂

∂t

∫ t

0
dτ

W(x, τ )

(t − τ)α
, 0 < α < 1. (17)

Applying Laplace transformation to (15), it becomes

sαW(x, s) = G
∂

∂x

[
V ′(x)

mηγ

+ Kγ

∂

∂x

]
W(x, s). (18)

Anomalous diffusion in the homogeneous fractal medium in one dimension is characterized
by the occurrence of a mean-square displacement of the form

〈(�x)2(t)〉0 = 2Kγ


(1 + γ )
tγ (19)
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when no external driving force is applied to the particle. The extraction of moments 〈(�x)n〉
for anomalous diffusion on fractal medium with dimension df is given by [7]

〈(�x)n(t)〉 =
∫ ∞

0
dx · xdf −1xnW(x, t). (20)

When the particle is assumed in a constant force field, say V (x) = −Fx, by the moment
expression (equation (20)) for order one and from the solution of (18), we have the displacement
of the particle

〈(�x)(t)〉F = F
(df + 1)

mηγ 
(df + 2)
(1 + γ )
tγ . (21)

Thus, from (19), (21) and the generalized Enistein–Stocks–Smoluchowski relation [5]

Kγ = kBT

mηγ

, (22)

we get the GER

〈(�x)(t)〉F = 1

df + 1

F 〈(�x)2(t)〉0

k
B
T

. (23)

It shows that the GER holds for FFPE (equation (15)), and that the pre-factor of GER is not
a universal constant, while it is given by df + 1, where df is the fractal dimension of the
fractal structure considered and 1 < df < 2. This just shows that the numerical pre-factors
of the power law should be modified by the local geometry as Amblard et al pointed out. In
particular, when df → 1, it reduces to

〈(�x)(t)〉F = 1

2

F 〈(�x)2(t)〉0

k
B
T

. (24)

This is just the result of [5].

4. Conclusion

It is proved that the theory presented by Amblard et al is not consistent with the GER. The
theory in terms of a fractional Fokker–Planck equation (FFPE) can be well modelled for the
experiment by Amblard et al. The result obtained by FFPE is consistent with the statement by
Amblard et al [1] that the numerical pre-factors of the power law would be modified by local
geometry and are not exact.
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